2.85 out of 5
2.85
83 reviews on Udemy

Chatbot Building: Rasa, DialogFlow & WIT.AI Bots with Python

Rasa NLU, Rasa Core, Google DialogFlow, Facebook's WIT.AI Talking Chatbot. Rasa Facebook Massenger Chatbot. Build a Bot.
Instructor:
GoTrained Academy
451 students enrolled
English
Understanding concepts of building chatbots with Rasa NLU, Rasa Core, DialogFlaw & Wit•ai
Building chatbots for Facebook Messenger
Buiding a chatbot that answers FAQs
Deploying your chatbot in Heroku application platform

Do you want to create a talking chatbot that interact with your visitors? In this tutorial, you will learn how to create Python chatbots using DialogFlow and Wit.AI platforms as well as powerful Rasa NLU and Rasa Core. DialogFlow, Wit.AI and Rasa provide several Natural Language Processing functions that parse user input and match them to the right response. Implementing NLP in your bot can be pretty difficult, but these platforms make it much easier to create a Facebook Messenger bot or a website chatbot.

DialogFlow (formerly Api.AI, Speaktoit) is a Google developer of human–computer interaction technologies based on natural language conversations. Dialogflow runs on Google Cloud Platform. In the DialogFlow Python tutorial, you will learn how to build a Facebook Messenger chatbot that incorporates NLP with Dialogflow and deploy it to Facebook.

Wit.AI makes it easy for developers to build Python chatbot applications and devices that you can talk or text to. Wit.AI is a natural language processing (NLP) tool that helps developers get structured data from chat or voice. Wit.AI makes it easy to build NLP into your chat bot, that learns from every interaction. If you want to build a Facebook bot even if you have not before, Wit.AI would be a great option. In the Wit.AI Python tutorial, you will learn how to train a Python chatbot using wit.AI by creating intents and entities for your chatbot data to build a Facebook Messenger chatbot.

Rasa is a powerful open source machine learning framework for developers to create contextual chatbots and expand bots beyond answering simple questions. In this course, you will study both Rasa NLU and Rasa Core.

  • Rasa NLU is an open-source natural language processing tool for intent classification and entity extraction in chatbots. You can think of it as a set of high level APIs for building your own language parser using existing NLP and ML libraries. he main reasons for using open source NLU are that: 1) you don’t have to hand over all your chatbot training data to Google, Microsoft, Amazon, or Facebook; 2) Machine Learning is not one-size-fits all. You can tweak and customize Python chatbot models for your training data; and 3) Rasa NLU runs wherever you want, so you don’t have to make an extra network request for every chatbot message that comes in.

  • Rasa Core leverages developers’ existing domain knowledge to help them bootstrap from zero training data, and adopts the interactive learning approach. With Rasa Core, you manually specify all of the things your bot can say and do. We call these actions. One action might be to greet the user, another might be to call an API, or query a database. Then you train a probabilistic model to predict which action your Python chatbot should take given the history of a chatbot conversation.

This Python chatbot course will help you:

  • Build chatbots with Python using Rasa NLU & Rasa Core, DialogFlow and Wit.AI

  • Use DialogFlow to build a Facebook Messenger chatbot.

  • Use Wit.AI to build a Facebook Messenger chatbot.

  • Use Rasa NLU to build a chatbot.

  • Use Rasa Core to build a chatbot.

  • Understand intents and entities.

  • Build a Facebook Messenger bot.

  • Deploy chatbots to cloud platforms such as Heroku.

Keywords: Python chatbot, google apis client, google api client, google apis, google api, google cloud platform, cloud, google dialogflow, dialogflow chatbot, Dialogflow API, chatobots, Rasa NLU, Rasa Core, Facebook Messenger chatbot.

You can view and review the lecture materials indefinitely, like an on-demand channel.
Definitely! If you have an internet connection, courses on Udemy are available on any device at any time. If you don't have an internet connection, some instructors also let their students download course lectures. That's up to the instructor though, so make sure you get on their good side!
2.9
2.9 out of 5
83 Ratings

Detailed Rating

Stars 5
25
Stars 4
15
Stars 3
18
Stars 2
10
Stars 1
15
1f3656450a39b1bcfd899341156edf4f
30-Day Money-Back Guarantee

Includes

5 hours on-demand video
4 articles
Full lifetime access
Access on mobile and TV
Certificate of Completion